1932 |
|
Experimentelle Entdeckungen
Entdeckung des Positrons |
|
|
Der amerikanische Physiker Charles David Anderson (1905-1991) entdeckt
das Positron, das Antiteilchen zum Elektron. Dieses Teilchen war bereits vier
Jahre zuvor von Paul Adrienne Maurice Dirac (1902-1984) vorhergesagt worden.
Im Jahr 1936 erhält Anderson den Physik-Nobelpreis für seine Entdeckung.
Siehe auch: Anderson, Antimaterie, Dirac, Nobelpreis, Positron
|
1947 |
|
Experimentelle Entdeckungen
Entdeckung des Myons |
|
|
Das erste Exemplar aus der zweiten Teilchenfamilie, das Myon, ein schwerer
Vetter des Elektrons, wird identifiziert. Das geschieht völlig unerwartet:
Der Physik-Nobelpreisträger I.I. Rabi bringt seine Irritation mit der
Frage "Wer hat denn das bestellt?" zum Ausdruck. Gesehen wurde das Myon
bereits 1937 - man wusste aber fast ein Jahrzehnt lang nicht, was es
ist. Siehe auch: Myon, Teilchenfamilien
|
1947 |
|
Experimentelle Entdeckungen
Geladene Pionen |
|
|
Elektrisch geladene Pionen werden in der kosmischen Strahlung entdeckt. Diese Teilchen sind sehr kurzlebig. Knapp zwanzig Jahre später wird sich zeigen, dass man sich Pionen aus zwei Quarks zusammengesetzt vorstellen kann. Siehe auch: Kosmische Strahlung, Lebensdauer, Pion, Quark
|
1947 |
|
Experimentelle Entdeckungen
Seltsame Teilchen |
|
|
Zwei neue Teilchentypen (Lambda und K-Null) werden in der kosmischen
Strahlung entdeckt. Diese Teilchen entstehen nur in Paaren und zerfallen
überraschend langsam. Physiker nennen sie daher "seltsam" oder auf Englisch
"strange". Knapp Zwei Jahrzehnte später wird sich zeigen, dass das seltsame Verhalten darauf
zurückzuführen ist, dass die Teilchen ein Strange-Quark beinhalten,
das für den langsamen Zerfall verantwortlich ist. Siehe auch: Kaon, Kosmische Strahlung, Lambda, Seltsamkeit, Strange-Quark
|
1949 |
|
Experimentelle Entdeckungen
Neutrale Pionen |
|
|
Elektrisch neutrale Pionen werden in der kosmischen Strahlung entdeckt. Diese Teilchen sind sehr kurzlebig. Knapp zwanzig Jahre später wird sich zeigen, dass man sich Pionen aus zwei Quarks zusammengesetzt vorstellen kann. Siehe auch: Kosmische Strahlung, Lebensdauer, Pion, Quark
|
1953 |
|
Experimentelle Entdeckungen
Vermessung des Atomkerns |
|
|
Am kalifornischen Forschungszentrum SLAC misst der amerikanische Physiker
Robert Hofstadter (1915-1990) die Ladungsverteilung innerhalb von Atomkernen. Dazu beschießt er sie mit Elektronen.
1961 erhält Hoftstadter den Physik-Nobelpreis "für seine bahnbrechenden
Untersuchungen zur Streuung von Elektronen in Atomkernen und seine dadurch
gemachten Entdeckungen bezüglich der Kernstruktur." Siehe auch: Atomkern, Nobelpreis, SLAC
|
1955 |
|
Experimentelle Entdeckungen
Entdeckung des Antiprotons |
|
|
Das Antiproton wird am Bevatron in Berkley gefunden.
Dafür erhalten 1959 Emilio Gino Segrè (1905-1989) und Owen Chamberlain
(geb. 1920) den Physik-Nobelpreis. Siehe auch: Antimaterie, Antiproton, Nobelpreis
|
1956 |
|
Experimentelle Entdeckungen
Nachweis des Elektron-Neutrinos |
|
|
Der experimentelle Nachweis des Elektron-Neutrinos durch Fred Reines (1918-1998) und Clyde Cowan gelingt. Die beiden untersuchen dafür die Strahlung, die von Kernreaktoren ausgeht.
Das Teilchen war 1930 von Wolfgang Pauli vorhergesagt worden. Da es aber nur über die Schwache Kraft wechselwirkt, hat die Entdeckung 26 Jahre auf sich warten lassen.
Frederick Reines erhält 1995 den Nobelpreis "für seine bahnbrechenden
experimentellen Beiträge zur Physik der Leptonen, insbesondere für den
Nachweis des Neutrinos." Siehe auch: Elektron-Neutrinos, Neutrinos, Nobelpreis, Schwache Kraft
|
1957 |
|
Experimentelle Entdeckungen
Das Universum ist nicht spiegelsymmetrisch |
|
|
Ein Experiment der Physikerin Chien-Shiung Wu (*1912) und ihrer
Mitarbeiter zeigt: Würde man unser Universum spiegeln, so würden andere Gesetze gelten.
Damit konnte die Vermutung von Tsung
Dao Lee (*1926) und Chen Ning Yang (*1922) im Jahr zuvor bestätigt werden. Siehe auch: Spiegelung, Symmetrie, Verletzung der Spiegelsymmetrie
|
1962 |
|
Experimentelle Entdeckungen
Entdeckung des Myon-Neutrinos |
|
|
Experimente zeigen, dass es einen weiteren Neutrinotyp geben muss:
Es ist das Myon-Neutrino.
1988 teilen sich für diese Entdeckung Leon M. Ledermann (*1922),
Melvin Schwartz (*1932) und Jack Steinberger (*1921) den Physik-Nobelpreis "für die
Neutrinostrahlmethode und die Demonstration der Dublettstruktur der
Leptonen durch die Entdeckung des Myon-Neutrinos." Siehe auch: Myon-Neutrino, Neutrinos, Nobelpreis
|