1897 |
|
Experimentelle Entdeckungen
Entdeckung des Elektrons |
|
|
Der Brite Sir Joseph John Thomson (1856-1940) entdeckt das Elektron.
Dieser Fund war der Beginn der "neuen" Teilchenphysik. Denn mit dem Elektron gab sich das erste Teilchen des Standard-Modells zu erkennen.
Im Jahr 1906 erhält Thomson den Physik-Nobelpreis "in Anerkennung der
außergewöhnlichen Verdienste, die er sich durch seine theoretischen
und experimentellen Untersuchungen zur elektrischen Leitung durch Gase
erworben hat." Siehe auch: Atom, Elektron, Joseph John Thomson, Nobelpreis, Standard-Modell
|
1900 |
|
Theorien
Der Quantengedanke |
|
|
Der deutsche Physiker Max Karl Ernst Ludwig Planck (1858-1947) macht
den außergewöhnlichen Vorschlag, dass die Energie von Strahlung nur
in bestimmten Paketen aufgenommen und abgegeben werden kann. Er schafft damit die Grundlage für
die Quantentheorie, die in den folgenden 30 Jahren entwickelt wird.
Im Jahr 1918 erhält Planck den Physik-Nobelpreis "in Anerkennung seiner
Verdienste um die Entwicklung der Physik durch seine Entdeckung der
Energiequanten." Siehe auch: Hohlraumstrahlung, Nobelpreis, Planck, Quantentheorie
|
1905 |
|
Theorien
Photoeffekt mit Quanten |
|
|
Der deutsch-amerikanische Physiker Albert Einstein (1879-1955) liefert
eine quantentheoretische Erklärung für den Photoeffekt. Dabei lösen sich Elektronen von einer Metalloberfläche, wenn auf diese
Licht fällt. Einsteins Erklärung: Das Licht besteht aus Paketen, den Photonen, diese übertragen Energie an die Elektronen, so dass sich diese lösen können.
Im Jahr 1921 erhält Einstein den Physik-Nobelpreis "für seine Verdienste
um die theoretische Physik und insbesondere für seine Entdeckung des
Gesetzes für den photo-elektrischen Effekt." Siehe auch: Einstein, Nobelpreis, Photoeffekt, Quantentheorie
|
1905 |
|
Theorien
Spezielle Relativitätstheorie |
|
|
Der deutsch-amerikanische Physiker Albert Einstein (1879-1955) entwickelt
die Spezielle Relativitätstheorie. Darin findet es sich mit der Tatsache ab, dass die
Geschwindigkeit des Lichts unabhängig von der Geschwindigkeit der Lichtquelle
ist. Daraus folgen die Verwebung von Raum und Zeit und die Umwandlungsmöglichkeit
von Masse und Energie.
In Teilchenbeschleunigern wandeln sich Masse und Energie ständig um,
auch müssen hier die Gesetze der Relativitätstheorie bedacht werden,
die erst richtig bei Geschwindigkeiten in der Nähe der des Lichts zu tragen kommen. Siehe auch: Albert Einstein, Spezielle
Relativitätstheorie
|
1907 |
|
Theorien
Allgemeine Relativitätstheorie |
|
|
Der deutsch-amerikanische Physiker Albert Einstein (1879-1955) beginnt
damit, die Schwerkraft durch die Krümmung der Raumzeit zu beschreiben.
Die Arbeiten werden bis 1916 andauern und Newtons Gravitationstheorie
ablösen.
Die Schwerkraft bereitet dem Standard-Modell noch große Probleme. So ist es bisher nicht gelungen, allgemeine Relativitätstheorie und Quantenphysik miteinander zu verheiraten. Es scheint so, als seien dazu ganz neue Konzepte vonnöten, zum Beispiel Superstrings. Siehe auch: Allgemeine
Relativitätstheorie, Einstein, Schwerkraft, Superstringtheorien
|
1909 |
|
Experimentelle Entdeckungen
Entdeckung der Ladungsquantelung |
|
|
Der amerikanische Physiker Robert Andrews Millikan (1868-1953) entdeckt,
dass die elektrische Ladung von Öltröpfchen immer nur ein Vielfaches
der Ladung des Elektrons ist. Seitdem geht man davon aus, dass elektrische
Ladung nur in ganzen Vielfachen der Elektronenladung vorkommt. Quarks
bilden hier eine Ausnahme: Bei ihnen gibt es auch Drittelladung. Aber
bisher ist es nicht gelungen, ein einzelnes Quark samt krummer
Ladung nachzuweisen. Quarks kommen immer in Gruppen ganzzahliger Elementarladungen
vor.
Millikan erhält 1923 den Physik-Nobelpreis "für seine Arbeiten zur
elektrischen Elementarladung und zum photoelektrischen Effekt." Siehe auch: Elektrische Ladung, Elektron, Nobelpreis, Quark
|
1909 |
|
Experimentelle Entdeckungen
Entdeckung des Atomkerns |
|
|
Ein Forscherteam um den Briten Lord Ernest Rutherford (1871-1937) streut Alphateilchen
(zwei Neutronen plus zwei Protonen) an einer Goldfolie. Die Resultate
lassen Rutherford auf die Existenz kleiner, dichter und positiv geladener
Kerne im Inneren der Atome schließen. Siehe auch: Atom, Atomkern, Neutron, Proton, Rutherford
|
1911 |
|
Experimentelle Entdeckungen
Kosmische Strahlung |
|
|
Mit Hilfe bemannter Freiballons wird eine Strahlung aus dem Weltall entdeckt,
die - wie sich später herausstellt - aus Atomkernen besteht. Diese kosmische
Strahlung wird ein begehrtes Untersuchungsobjekt der jungen Teilchenphysik.
Der österreichisch-amerikanische Physiker Victor Franz Hess (1883-1964)
erhält 1936 den Physik-Nobelpreis "für die Entdeckung der kosmischen
Strahlung." Siehe auch: Kosmische Strahlung, Nobelpreis
|
1911 |
|
Maschinen
Nebelkammer |
|
|
Das erste funktionstüchtige Exemplar einer Nebelkammer wird gebaut. Ihr Konstrukteur ist der schottische Physiker
Charles Thomson Rees Wilson (1869-1959). In einer Nebelkammer bilden sich Nebelspuren
entlang der Bahnen geladener Teilchen. In der aktuellen Teilchenphysik spielen diese Detektoren keine Rolle mehr.
1927 erhält Wilson den Physik-Nobelpreis Nobelpreis "für seine Methode,
die Bahnen von elektrisch geladenen Teilchen durch Kondensation von
Wasserdampf sichtbar zu machen." Siehe auch: Nebelkammer, Nobelpreis
|
1913 |
|
Theorien
Bohrs Atommodell |
|
|
Der Däne Niels Bohr (1885-1962) nutzt die bisher gewonnenen Ergebnisse der Quantentheorie,
um ein neues Atommodell aufzustellen. Dieses Modell kann einige Eigenschaften
von Atomen verblüffend elegant erklären, es bricht aber mit Vorstellungen
der klassischen Physik. Bohrs Atommodell ist ein wichtiger Schritt hin zum endgültigen quantenmechanischen Modell, das im folgenden Jahrzehnt aufgestellt wird.
Im Jahr 1922 erhält Niels Bohr den Physik-Nobelpreis "für seine Verdienste
bei der Erforschung der Struktur der Atome und der von ihnen ausgehenden
Strahlung." Siehe auch: Atome, Bohr, Nobelpreis, Quantentheorie
|